Hello rising algebra 2 students!
It's time for summer math! We would like to make sure that you continue to learn this summer by completing the following algebra math topics. Research shows that all students experience learning losses during the summer when they do not engage in educational activities. On average, students lose approximately 2.6 months of grade level equivalency in mathematical computations during the summer months (Harvard Graduate School of Education).

At the beginning of each topic, there are example problems to refresh your memory. If you're still stuck, I highly recommend Khan Academy as a resource.

Please turn in your completed summer math assignment to your algebra 2 teacher on the first day of school to receive extra credit!

Wishing you a safe and relaxing summer!
Mrs. Boulet

Combining Like Terms

Example: Simplify

$$
\begin{aligned}
& 8 x^{2}+16 x y-3 x^{2}+3 x y-3 x \\
& 8 x^{2}-3 x^{2}+16 x y+3 x y-3 x \\
& 5 x^{2}-3 x+19 x y
\end{aligned} \quad \text { Identify \&/or Group Like Terms }
$$

Simplify

$6 x+11 y-4 x+y$	$-3 p-4 t-5 t-2 p$	$3 x^{2} y-5 x y^{y}+6 x^{2} y$
$-5 m+3 q+4 m-q$	$9 x-22 y+18 x-3 y$	$5 x^{2}+2 x y-7 x^{2}+x y$

Solving Equations with variables on both sides

Literal Equations

Solve $2 \mathrm{p}=\mathrm{kx}-\mathrm{q}$ for x		
	$2 p=k x-q$	Solve for x by isolating the variable x
	$2 p+q=k x$	Add q to each side
	$\frac{2 p+q}{k}=\mathrm{x}$	Divide each side by k
Solve for the indicated variable.	$\mathrm{X}=\frac{2 p+q}{k}$	
$a x-c=b$; solve for x	$2 x+4 y=8 ;$ solve for y	$2 / 3 y+4 x=-2 ;$ solve for y

Solving Inequalities \& Graphing

Solve \& Graph.

$-x+2>7$	$-5+m \leq 4$	$z+6>-2$
$-16-8 x \geq 0$	$x-5<4$	$-3 x+4 \leq-5$
$8 x-6 \geq 10$	$9(2 x-5)-3<7 x-4$	$9 x-11>6 x-9$

Calculating Slope

Example: \quad Find the slope of a line passing through $(3,-9)$ and $(2,-1)$.

Find slope.	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$	Formula for slope
	$m=\frac{-1-(-9)}{2-3}=\frac{-1+9}{-1}$	Substitute values and simplify
	$m=\frac{8}{-1}=-8$	Slope is -8
$(4,1)(3,6)$	$(5,6)(9,8)$	$(-1,7)(-3,18)$
$(-8,0)(5,-2)$	$(0,-4)(7,3)$	$(-6,-4)(1,10)$

Finding the equation of a line (given a point and y-intercept)
Example Find an equation of the line that passes through the point $(3,4)$ and has a y-intercept of 5

Finding the equation of a line (given a point and the slope)
Example Find an equation of the line that passes through the point $(1,2)$ and has a slope of -3

$$
\begin{array}{ll}
y-y_{1}=m\left(x-x_{1}\right) & \text { Point-Slope Form } \\
y-2=-3(x-1) & \text { Substitute } 2 \text { for } y_{1} 1 \text { for } x_{1} \text { and }-3 \text { for } m . \\
y-2=-3 x+3 & \text { Distribute the }-2 \\
y=-3 x+5 & \text { Add } 2 \text { to both sides }
\end{array}
$$

Find the equation of the line in slope-intercept form.

$(2,3) ; m=-4$	$(-1,5) ; m=2$	$(4,6) ; m=-1 / 2$
$(-3,-4) ; m=2 / 3$	$(0,4) ; m=-3 / 2$	$(5,0) ; m=-4$

Finding the equation of a line (given two points)

Example \quad Write an equation of the line that passes through the points $(4,8)$ and $(3,1)$.

$$
\begin{array}{ll}
m=\frac{1-8}{3-4} & \text { Substitute values into the formula for slope } \\
m=\frac{-7}{-1}=7 & \text { Simplify } \\
y-1=7(x-3) & \text { Select either point and substitute values of point and slope into point-slope form } \\
y-1=7 x-21 & \text { Distribute the } 7 \\
y=7 x-20 & \text { Add } 1 \text { to each side to get the equation of a line in slope-intercept form }
\end{array}
$$

Find the equation of the line in slope-intercept form.

$(6,-3)(1,2)$	$(5,-1)(4,-5)$	$(-3,-7)(0,8)$
$(-7,9)(-5,3)$	$(-2,4)(3,-6)$	$(1,2)(-1,-4)$

Standard Form of a Line ($\mathrm{Ax}+\mathrm{By}=\mathrm{C}$)

Example \quad Graph a line in standard form $2 x+3 y=6$			
Option 1:	Change to slope-intercept form	Option 2	Keep in Standard form
$2 x+3 y=6$	Subtract $2 x$ from each side Divide everything by 3 Graph a y-intercept at 2 \& a slope of $-2 / 3$	$2 \mathrm{x}+3 \mathrm{y}=6$	
$3 y=-2 x+6$		$\mathrm{m}=\frac{-A}{B}=\frac{-2}{3}$	Slope in standard form $\frac{-A}{B}$
$y=-2 / 3 x+2$		$\mathrm{b}=\frac{C}{B}=\frac{6}{3}=2$	y-intercept in stand form $\mathrm{b}=\frac{C}{B}$
$m=-2 / 3$ and $\mathrm{b}=2$			Graph using a slope of $-2 / 3 \& y$-intercept of 2

Graph the y-intercept of 2, then go down 2 and right 3 to find another point on the line.
You can also go up 2 and left 3; connect the points to make a line.

Graph the equation of each ${ }^{\gamma}$ line.

Solving Systems of Equations (by graphing or substitution)

Example Solve the system $y=2 x+5$ and $y=-1 / 2 x-4$			
By Graphing		By substitution	
Graph $\mathrm{y}=2 \mathrm{x}+3$		Given $\mathrm{y}=2 \mathrm{x}+3$ \& $\mathrm{y}=-1 / 2 \mathrm{x}-7$	
y-intercept of 3		$2 x+3=-1 / 2 x-7$	Substitute in place of y
slope of 2		$21 / 2 x+3=-7$	Add $1 / 2$ x to each side
		$21 / 2 x=-10$	Subtract 3 from each side
Graph $\mathrm{y}=-1 / 2 \mathrm{x}-7$		$x=-4$	Divide each side by $21 / 2$
y-intercept of -7			Dive each side
slope of $-1 / 2$	-	$y=2(-4)+3$	Substitute (-4) in place of x
		$y=-8+3$	Simplify
$(-4,-5)$ Coordinates for solution		$y=-5$	Combine like terms to find y
		$(-4,-5)$	Coordinates for solution

Solve each system by graphing or substitution

$\begin{aligned} & y=2 x+4 \\ & -3 x+y=-9 \end{aligned}$		$\begin{aligned} & y=x-1 \\ & x+y=3 \end{aligned}$
$\begin{aligned} & 4 x+y=0 \\ & x+2 y=-7 \end{aligned}$		$\begin{aligned} & 1 / 2 x+2 y=12 \\ & x-2 y=6 \end{aligned}$

Solve Systems of Equations (by elimination)

Example

$2(0)+2 y=-4$	Substitute 0 for x in
$2 y=-4$	either equation; simplify
$y=-2$	Divide each side by 2

$(0,-2)$
Solution to system
Solve each system by elimination.

Solving Proportions

Example

$$
\begin{aligned}
\frac{x}{8} & =\frac{3}{4} \\
4 x & =8 \cdot 3 \\
4 x & =24 \\
x & =6
\end{aligned} \quad \text { Cross multiply }
$$

$$
\frac{6}{x+4}=\frac{2}{9}
$$

$$
6 \cdot 9=2(x+4) \quad \text { Cross Multiply }
$$

$$
54=2 x+8 \quad \text { Simplify both sides }
$$

$$
46=2 x \quad \text { Subtract } 8 \text { from both sides }
$$

$$
x=23 \quad \text { Divide each side by } 2
$$

Solve each proportion to find the value of the given variable.

$\frac{y}{40}=\frac{3}{8}$	$\frac{3}{p-6}=\frac{1}{p}$	$\frac{3}{8}=\frac{3}{2 d}$
$\frac{r}{3 r+1}=\frac{2}{3}$	$\frac{3}{m+4}=\frac{9}{14}$	$\frac{w}{4}=\frac{9}{w}$

Property of Exponents

Property		Example
Product of Powers	$a^{m} \cdot a^{n}=a^{m+n}$	$x^{4} \cdot x^{2}=x^{6}$
Power of a Power	$\left(a^{m}\right)^{n}=a^{m \cdot n}$	$\left(x^{4}\right)^{2}=x^{8}$
Power of a Product	$(a b)^{m}=a^{m} b^{m}$	$(2 x)^{3}=8 x^{3}$
Negative Power	$a^{-n}=\frac{1}{a^{n}}$	$x^{-3}=\frac{1}{x^{3}}$
Zero Power	$a^{0}=1$	$4^{0}=1$
Quotient of Powers	$\frac{a^{m}}{a^{n}}=a^{m-n}$	$\frac{x^{10}}{x^{4}}=x^{6}$
Power of Quotients	$\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$	$\left(\frac{x}{y}\right)^{3}=\frac{a^{3}}{b^{3}}$

Simplify each exponent. Answers should be written using positive exponents.

$g^{5} \cdot g^{11}$	$\left(b^{6}\right)^{3}$	w^{-7}
$\frac{y^{12}}{y^{8}}$	$\left(3 x^{7}\right)\left(-5 x^{3}\right)$	$\left(-4 a^{5} b^{0} \mathrm{c}\right)^{2}$
$-6\left(x^{2} y^{3}\right)^{4}$	$\left(-18 \mathrm{mn}^{4}\right)\left(-1 / 6 \mathrm{mn}^{2}\right)$	$\frac{16 x^{5} y^{2}}{2 x^{3} y^{3}}$

Polynomial Operations

Add or Subtract like terms	Distributing	Multiplying binomials \&/or trinomials	
$\left(7 x^{2}+4 x-3\right)-\left(-5 x^{2}-3 x+2\right)$	$-2 x(5 x+11)$	$(7 x-3)(3 x+7)$	Multiply everything in the $1^{\text {st }}$ binomial times the 2

Simplify each polynomial

$(2 x+3 y)+(4 x+9 y)$	$\left(7 x^{2}+x+1\right)-\left(3 x^{2}-4 x-3\right)$	$\left(7 a^{2}-a+4\right)-\left(3 a^{2}-4 a-3\right)$
$-3 x\left(8 x^{2}-3 x+1\right)$	$-10 p q\left(3 p q+4 p-5 q^{2}\right)$	$5 w\left(w^{2}-7 w+3\right)-2 w\left(2 w^{2}-5 w+2\right)$
$(x+4)(x-7)$	$(5 x-2 y)(3 x+9 y)$	$(z+5)(4 z-6)$

Factoring Polynomials $\left(a x^{2}+b x+c\right)$
Examples:

Factoring out GCF	Difference of squares	Perfect Square Trinomials	Trinomials
$6 x^{2}+21 x$	$x^{2}-64$	$4 x^{2}+12 x+9$	$3 x^{2}+7 x+2$
$3 x(2 x+7)$	$(x+8)(x-8)$	$(2 x+3)^{2}$	$(3 x+1)(x+2)$

Factor completely.

$6 e^{3} f-11 e f$	$y^{2}-5 y-84$	$6 x^{2}+7 x+2$
$6 z^{2}-5 z-4$	$75 x^{2}-147 y^{2}$	$x^{2}-25$
$x^{2}-6 x+9$	$16 c^{2}+72 c d+81 d^{2}$	$x^{4}-16$

Solving Quadratics

Example $\quad x^{2}+3 x^{2}=10$

$$
\begin{array}{ll}
x^{2}+3 x^{2}-10=0 & \text { Subtract } 10 \text { from both sides so the quadratic is equal to } 0 \\
(x-5)(x+2)=0 & \text { Factor (see previous section on different kinds of factoring) } \\
x=5 \text { and } x+2=0 & \text { Use Zero Product Property and put each binomial equal to } 0 \\
x=-2 & \text { Solve both for } x .
\end{array}
$$

Solve each quadratic to find the possible values of x.

$3 x^{2}-12=0$	$6 x^{2}-5 x+1=0$	$x^{2}+7 x=18$
$x^{2}+11 x=80$	$2 x^{2}=x+15$	$3 x^{3}+3 x^{2}-60 x=0$

Distance Formula

Example: \quad Find the distance between the points $(-4,3)$ and $(-7,8)$

$$
\begin{array}{ll}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & \text { Distance formula } \\
d=\sqrt{(-7--4)^{2}+(8-3)^{2}} & \text { Substitute the coordinates into the distance formula } \\
d=\sqrt{(-3)^{2}+(5)^{2}} & \begin{array}{l}
\text { Simplify each parentheses } \\
d=\sqrt{9+25} \\
d=\sqrt{34}
\end{array} \\
\begin{array}{l}
\text { Simplify by squaring each } \\
\text { Combine like terms and make sure it is in simplest } \\
\text { radical form. }
\end{array}
\end{array}
$$

Find the distance between each pair of points

$(3,6)(0,-2)$	$(-3,4)(1,4)$	$(8,-2),(-3,-6)$
$(5,-2)(-6,5)$	$(-6,-6)(-3,2)$	$(-8,5)(-1,1)$

